Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 223: 116164, 2024 May.
Article in English | MEDLINE | ID: mdl-38531422

ABSTRACT

Cancer morbimortality is still a great concern despite advances in research and therapies. Histamine and its receptors' ligands can modulate different biological responses according to the cell type and the receptor subtype involved. Besides the wide variety of histamine functions in normal tissues, diverse roles in the acquisition of hallmarks of cancer such as sustained proliferative signaling, resistance to cell death, angiogenesis, metastasis, altered immunity and modified microenvironment have been described. This review summarizes the present knowledge of the various roles of histamine H2 receptor (H2R) ligands in neoplasias. A bioinformatic analysis of human tumors showed dissimilar results in the expression of the H2R gene according to tumor type when comparing malignant versus normal tissues. As well, the relationship between patients' survival parameters and H2R gene expression levels also varied, signaling important divergences in the role of H2R in neoplastic progression in different cancer types. Revised experimental evidence showed multiple effects of H2R antihistamines on several of the cited hallmarks of cancer. Interventional and retrospective clinical studies evaluated different H2R antihistamines in cancer patients with two main adjuvant uses: improving antitumor efficacy (which includes regulation of immune response) and preventing toxic adverse effects produced by chemo or radiotherapy. While there is a long path to go, research on H2R antihistamines may provide new opportunities for developing more refined combination therapeutic strategies for certain cancer types to improve patients' survival and health-related quality of life.


Subject(s)
Histamine , Neoplasms , Humans , Histamine/metabolism , Retrospective Studies , Quality of Life , Histamine H2 Antagonists , Histamine Antagonists/pharmacology , Histamine Antagonists/therapeutic use , Receptors, Histamine H2/genetics , Receptors, Histamine H2/metabolism , Neoplasms/drug therapy , Tumor Microenvironment
2.
Life Sci ; 307: 120853, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35926589

ABSTRACT

AIMS: Radioresistance and recurrences are crucial hindrances in cancer radiotherapy. Fractionated irradiation can elicit a mesenchymal phenotype in irradiated surviving cells and a deep connection exists between epithelial mesenchymal transition, radioresistance, and metastasis. The aim of this study was to analyze the effect of the secretoma of irradiated non-tumorigenic mammary epithelial cells on surviving irradiated breast tumor cells regarding the gain of mesenchymal traits and migratory ability. MAIN METHODS: MDA-MB-231 and MCF-7 breast cancer cells, irradiated or not, were incubated with conditioned media from MCF-10A non-tumorigenic epithelial breast cells, irradiated or not. After five days, we evaluated the expression and localization of epithelial and mesenchymal markers (by western blot and indirect immunofluorescence), cell migration (using transwells) and metalloproteinases activity (by zymography). We also assessed TGF-ß1 content in conditioned media by immunoblot, and the effect of A83-01 (a selective inhibitor of TGF-ß receptor I) and PP2 (a Src-family tyrosine kinase inhibitor) on nuclear Slug and cell migration. KEY FINDINGS: Conditioned media from MCF-10A cells caused phenotypic changes in breast tumor cells with attainment or enhancement of mesenchymal traits mediated at least in part by the activation of the TGF-ß type I receptor and a signaling pathway involving Src activation/phosphorylation. The effects were more pronounced mostly in irradiated tumor cells treated with conditioned media from irradiated MCF-10A. SIGNIFICANCE: Our results suggest that non-tumorigenic epithelial mammary cells included in the irradiation field could affect the response to irradiation of post-surgery residual cancer cells enhancing EMT progression and thus modifying radiotherapy efficacy.


Subject(s)
Neoplasms , Transforming Growth Factor beta1 , Cell Line, Tumor , Cell Movement , Culture Media, Conditioned/pharmacology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Humans , MCF-7 Cells , Metalloproteases , Phenotype , Radiation, Ionizing , Receptor, Transforming Growth Factor-beta Type I , Transforming Growth Factor beta1/metabolism , src-Family Kinases
3.
Biochem Pharmacol ; 180: 114177, 2020 10.
Article in English | MEDLINE | ID: mdl-32721509

ABSTRACT

Epithelial-mesenchymal transition (EMT) contributes to cell invasion and metastasis during the progression of epithelial cancers. Though preclinical evidence suggests a role for histamine H4 receptor (H4R) in breast cancer growth, its function in the EMT is less known. In this study we proposed to investigate the effects of H4R ligands on EMT and mammosphere formation as a surrogate assay for cancer stem cells in breast cancer cells with different invasive phenotype. We also investigated the participation of Src and TGF-ß signaling in these events. Breast cancer cells were treated with the H4R agonists Clobenpropit, VUF8430 and JNJ28610244 and the H4R antagonist JNJ7777120. Immunodetection studies showed cytoplasmic E-cadherin, cytoplasmic and nuclear beta-catenin, nuclear Slug and an increase in vimentin and α-smooth muscle actin expression. There was also an enhancement in cell migration and invasion assessed by transwell units. All these effects were prevented by JNJ7777120. Moreover, H4R agonists induced an increase in phospho-Src levels detected by Western blot. Results revealed the involvement of phospho-Src in EMT events. Upon treatment with H4R agonists there was an increase in phospho-ERK1/2 and TGF-ß1 levels by Western blot, in Smad2/3 positive nuclei by indirect immunofluorescence, and in tumor spheres formation by the mammosphere assay. Notably, the selective TGF-ß1 kinase/activin receptor-like kinase inhibitor A83-01 blocked these effects. Moreover, cells derived from mammospheres exhibited higher Slug expression and enhanced migratory behavior. Collectively, findings support the interaction between H4R and TGF-ß receptor signaling in the enhancement of EMT features and mammosphere formation and point out intracellular TGF-ß1 as a potential mediator of these events.


Subject(s)
Breast Neoplasms/metabolism , Epithelial-Mesenchymal Transition/physiology , Oncogene Protein pp60(v-src)/metabolism , Receptors, Histamine H4/agonists , Receptors, Histamine H4/metabolism , Transforming Growth Factor beta1/metabolism , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , Indoles/pharmacology , MCF-7 Cells , Piperazines/pharmacology
4.
Pharmacol Res ; 111: 731-739, 2016 09.
Article in English | MEDLINE | ID: mdl-27473821

ABSTRACT

Radiotherapy is a prime option for treatment of solid tumors including breast cancer though side effects are usually present. Experimental evidence shows an increase in invasiveness of several neoplastic cell types through conventional tumor irradiation. The induction of epithelial to mesenchymal transition is proposed as an underlying cause of metastasis triggered by gamma irradiation. Experiments were conducted to investigate the role of histamine on the ionizing radiation-induced epithelial to mesenchymal transition events in breast cancer cells with different invasive phenotype. We also evaluated the potential involvement of Src phosphorylation in the migratory capability of irradiated cells upon histamine treatment. MCF-7 and MDA-MB-231 mammary tumor cells were exposed to a single dose of 2Gy of gamma radiation and five days after irradiation mesenchymal-like phenotypic changes were observed by optical microscope. The expression and subcellular localization of E-cadherin, ß-catenin, vimentin and Slug were determined by immunoblot and indirect immunofluorescence. There was a decrease in the epithelial marker E-cadherin expression and an increase in the mesenchymal marker vimentin after irradiation. E-cadherin and ß-catenin were mainly localized in cytoplasm. Slug positive nuclei, matrix metalloproteinase-2 activity and cell migration and invasion were significantly increased. In addition, a significant enhancement in Src phosphorylation/activation could be determined by immunoblot in irradiated cells. MCF-7 and MDA-MB-231 cells also received 1 or 20µM histamine during 24h previous to be irradiated. Notably, pre-treatment of breast cancer cells with 20µM histamine prevented the mesenchymal changes induced by ionizing radiation and also reduced the migratory behavior of irradiated cells decreasing phospho-Src levels. Collectively, our results suggest that histamine may block events related to epithelial to mesenchymal transition in irradiated mammary cancer cells and open a perspective for the potential use of histamine to improve radiotherapy efficacy.


Subject(s)
Breast Neoplasms/radiotherapy , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/drug effects , Histamine/pharmacology , Radiation-Protective Agents/pharmacology , Antigens, CD , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Cell Movement/radiation effects , Dose-Response Relationship, Drug , Epithelial-Mesenchymal Transition/radiation effects , Female , Humans , MCF-7 Cells , Neoplasm Invasiveness , Phenotype , Phosphorylation , Radiotherapy/adverse effects , Signal Transduction/drug effects , Signal Transduction/radiation effects , Snail Family Transcription Factors/metabolism , Vimentin/metabolism , beta Catenin/metabolism , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...